01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
SUM1(nil) -> 011(#)
*12(*2(x, y), z) -> *12(y, z)
PROD1(app2(l1, l2)) -> PROD1(l2)
SUM1(app2(l1, l2)) -> +12(sum1(l1), sum1(l2))
*12(x, +2(y, z)) -> *12(x, y)
*12(*2(x, y), z) -> *12(x, *2(y, z))
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
+12(01(x), 01(y)) -> +12(x, y)
*12(x, +2(y, z)) -> +12(*2(x, y), *2(x, z))
+12(+2(x, y), z) -> +12(y, z)
PROD1(app2(l1, l2)) -> PROD1(l1)
*12(11(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(11(x), y) -> +12(01(*2(x, y)), y)
APP2(cons2(x, l1), l2) -> APP2(l1, l2)
SUM1(cons2(x, l)) -> +12(x, sum1(l))
+12(11(x), 11(y)) -> +12(x, y)
SUM1(app2(l1, l2)) -> SUM1(l1)
SUM1(app2(l1, l2)) -> SUM1(l2)
+12(+2(x, y), z) -> +12(x, +2(y, z))
SUM1(cons2(x, l)) -> SUM1(l)
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(app2(l1, l2)) -> *12(prod1(l1), prod1(l2))
PROD1(cons2(x, l)) -> PROD1(l)
*12(x, +2(y, z)) -> *12(x, z)
*12(01(x), y) -> 011(*2(x, y))
*12(01(x), y) -> *12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
SUM1(nil) -> 011(#)
*12(*2(x, y), z) -> *12(y, z)
PROD1(app2(l1, l2)) -> PROD1(l2)
SUM1(app2(l1, l2)) -> +12(sum1(l1), sum1(l2))
*12(x, +2(y, z)) -> *12(x, y)
*12(*2(x, y), z) -> *12(x, *2(y, z))
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
+12(01(x), 01(y)) -> +12(x, y)
*12(x, +2(y, z)) -> +12(*2(x, y), *2(x, z))
+12(+2(x, y), z) -> +12(y, z)
PROD1(app2(l1, l2)) -> PROD1(l1)
*12(11(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(11(x), y) -> +12(01(*2(x, y)), y)
APP2(cons2(x, l1), l2) -> APP2(l1, l2)
SUM1(cons2(x, l)) -> +12(x, sum1(l))
+12(11(x), 11(y)) -> +12(x, y)
SUM1(app2(l1, l2)) -> SUM1(l1)
SUM1(app2(l1, l2)) -> SUM1(l2)
+12(+2(x, y), z) -> +12(x, +2(y, z))
SUM1(cons2(x, l)) -> SUM1(l)
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(app2(l1, l2)) -> *12(prod1(l1), prod1(l2))
PROD1(cons2(x, l)) -> PROD1(l)
*12(x, +2(y, z)) -> *12(x, z)
*12(01(x), y) -> 011(*2(x, y))
*12(01(x), y) -> *12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP2(cons2(x, l1), l2) -> APP2(l1, l2)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APP2(cons2(x, l1), l2) -> APP2(l1, l2)
POL( APP2(x1, x2) ) = max{0, x1 - 2}
POL( cons2(x1, x2) ) = x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(y, z)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(x, +2(y, z))
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
Used ordering: Polynomial Order [17,21] with Interpretation:
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
POL( +12(x1, x2) ) = max{0, x1 + x2 - 1}
POL( 01(x1) ) = x1 + 1
POL( 11(x1) ) = x1 + 2
POL( +2(x1, x2) ) = x1 + x2 + 1
POL( # ) = 0
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(x, #) -> x
01(#) -> #
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(#, x) -> x
+2(11(x), 01(y)) -> 11(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
POL( +12(x1, x2) ) = max{0, x1 - 2}
POL( +2(x1, x2) ) = x1 + x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM1(app2(l1, l2)) -> SUM1(l1)
SUM1(app2(l1, l2)) -> SUM1(l2)
SUM1(cons2(x, l)) -> SUM1(l)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM1(app2(l1, l2)) -> SUM1(l1)
SUM1(app2(l1, l2)) -> SUM1(l2)
Used ordering: Polynomial Order [17,21] with Interpretation:
SUM1(cons2(x, l)) -> SUM1(l)
POL( SUM1(x1) ) = max{0, x1 - 2}
POL( app2(x1, x2) ) = x1 + x2 + 3
POL( cons2(x1, x2) ) = x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM1(cons2(x, l)) -> SUM1(l)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM1(cons2(x, l)) -> SUM1(l)
POL( SUM1(x1) ) = max{0, x1 - 2}
POL( cons2(x1, x2) ) = x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(*2(x, y), z) -> *12(y, z)
*12(x, +2(y, z)) -> *12(x, z)
*12(11(x), y) -> *12(x, y)
*12(x, +2(y, z)) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
*12(*2(x, y), z) -> *12(x, *2(y, z))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(*2(x, y), z) -> *12(y, z)
*12(*2(x, y), z) -> *12(x, *2(y, z))
Used ordering: Polynomial Order [17,21] with Interpretation:
*12(x, +2(y, z)) -> *12(x, z)
*12(11(x), y) -> *12(x, y)
*12(x, +2(y, z)) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
POL( *12(x1, x2) ) = max{0, x1 - 2}
POL( *2(x1, x2) ) = x1 + x2 + 3
POL( 11(x1) ) = x1
POL( 01(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(x, +2(y, z)) -> *12(x, z)
*12(11(x), y) -> *12(x, y)
*12(x, +2(y, z)) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
*12(11(x), y) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
POL( *12(x1, x2) ) = max{0, x2 - 2}
POL( +2(x1, x2) ) = x1 + x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(11(x), y) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(11(x), y) -> *12(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
*12(01(x), y) -> *12(x, y)
POL( *12(x1, x2) ) = max{0, x1 - 2}
POL( 11(x1) ) = x1 + 3
POL( 01(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(01(x), y) -> *12(x, y)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(01(x), y) -> *12(x, y)
POL( *12(x1, x2) ) = max{0, x1 - 2}
POL( 01(x1) ) = x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PROD1(app2(l1, l2)) -> PROD1(l2)
PROD1(cons2(x, l)) -> PROD1(l)
PROD1(app2(l1, l2)) -> PROD1(l1)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD1(app2(l1, l2)) -> PROD1(l2)
PROD1(app2(l1, l2)) -> PROD1(l1)
Used ordering: Polynomial Order [17,21] with Interpretation:
PROD1(cons2(x, l)) -> PROD1(l)
POL( PROD1(x1) ) = max{0, x1 - 2}
POL( app2(x1, x2) ) = x1 + x2 + 3
POL( cons2(x1, x2) ) = x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
PROD1(cons2(x, l)) -> PROD1(l)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD1(cons2(x, l)) -> PROD1(l)
POL( PROD1(x1) ) = max{0, x1 - 2}
POL( cons2(x1, x2) ) = x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
app2(nil, l) -> l
app2(cons2(x, l1), l2) -> cons2(x, app2(l1, l2))
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
sum1(app2(l1, l2)) -> +2(sum1(l1), sum1(l2))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
prod1(app2(l1, l2)) -> *2(prod1(l1), prod1(l2))